Hyperspaces of Peano continua of euclidean spaces

ثبت نشده
چکیده

If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space L(R) is homeomorphic to B∞, where B denotes the pseudo-boundary of the Hilbert cube Q. Introduction. For a space X, C(X) denotes the hyperspace of all nonempty subcontinua of X. It is known that for a Peano continuum X without free arcs, C(X) ≈ Q, where Q denotes the Hilbert cube (Curtis and Schori [7]). L(X) denotes the subspace of C(X) consisting of all nonempty locally connected continua. The spaces L(X) were first studied by Kuratowski in [11]. He proved that L(X) is an Fσδ-subset of C(X), i.e., a countable intersection of σ-compact subsets. A little later, Mazurkiewicz [12] proved that for n ≥ 3, L(R) belongs to the Borel class Fσδ \Gδσ . Our main result is that for n ≥ 3 the spaces L(R) are homeomorphic to the countable infinite product of copies of the pseudo-boundary B of Q. Our methods do not apply to the case n = 2. We use the theory of absorbing sets in the Hilbert cube and some ideas from Dijkstra, van Mill and Mogilski [9]. In fact, we prove that for n ≥ 3, L([−1, 1]) is an Fσδ-absorber in C([−1, 1] ). Our main result then follows easily. We are indebted to R. Cauty for finding an inaccuracy in an earlier version of this manuscript. 1991 Mathematics Subject Classification: Primary 57N20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure of Locally Connected Topological Spaces

0.1. This paper presents an investigation of the following problem. Exhibit a class X of topological spaces which contains all peano spaces and which has the following properties: (1) a cyclic element theory exists in each space of the class, (2) the abstract set consisting of all cyclic element of any space X of the class can be topologized so as to be a member of the class X, and (3) the hype...

متن کامل

A Note on Peano Spaces

In three-dimensional space set up a cylindrical coordinate system (r, $, z). The Hahn-Mazurkiewicz theorem characterizes Peano spaces (locally connected metric (compact) continua) as the continuous images of the closed unit interval I on the z-axis. In this note we obtain an extension theorem for Peano spaces (henceforth called Pspaces) based upon this characterization. We first define a dendri...

متن کامل

History of Continuum Theory

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 3 The Jordan Curve Theorem and the concept of a curve . . . . . . . . . . . . . . . . . 707 4 Local connectedness; plane continua.. . . . . ....

متن کامل

The homotopy dimension of codiscrete subsets of the 2-sphere S 2

Andreas Zastrow conjectured, and Cannon-Conner-Zastrow proved, (see [3,pp. 44-45]) that filling one hole in the Sierpinski curve with a disk results in a planar Peano continuum that is not homotopy equivalent to a 1-dimensional set. Zastrow's example is the motivation for this paper, where we characterize those planar Peano continua that are homotopy equivalent to 1-dimensional sets. While many...

متن کامل

Fuzzy Inner Product and Fuzzy Norm \of Hyperspaces

We introduce and  study  fuzzy (co-)inner product and fuzzy(co-)norm of hyperspaces. In this regard by considering  the notionof hyperspaces, as a generalization of vector spaces, first we willintroduce the notion of fuzzy (co-)inner product in hyperspaces and will apply it to formulate the notions offuzzy (co-)norm and fuzzy (co-)orthogonality  in hyperspaces. Inparticular, we will prove that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008